Structure of 2,4,6-Trichloroacetanilide

By S. C. Nyburg,* J. K. Fawcett \dagger and J. T. Szymański \ddagger
Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A 1, Canada

(Received 5 June 1987; accepted 27 July 1987)

Abstract

C}_{8} \mathrm{H}_{6} \mathrm{Cl}_{3} \mathrm{NO}, M_{r}=238 \cdot 5\), monoclinic, $P n$ (general equivalent positions: $x, y, z ; \frac{1}{2}+x,-y, \frac{1}{2}+z$), $a=8.224$ (3), $\quad b=8.237$ (3), $\quad c=7.966$ (3) $\AA, \quad \beta=$ $113.01(5)^{\circ}, V=496.7$ (3) $\AA^{3}, Z=2, D_{m}=1.59(2)$, $D_{x}=1.595 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \mu(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})$ $=80.28 \mathrm{~cm}^{-1}, F(000)=240, T=295 \mathrm{~K}, R=0.055$, $w R=0.073,907$ significant reflections. The amide group and phenyl ring are each planar (maximum deviations 0.028 and $0.043 \AA$ respectively) but, to eliminate conflict between the amide oxygen atom and an adjacent chlorine substituent, the normals to these planes are at 69.4°. The molecules are $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonded with $\mathrm{H} \ldots \mathrm{O} 1.91 \AA$ and the angle at H $159 \cdot 0^{\circ}$.

Experimental. Colourless crystal of unmeasured dimensions; 1268 unique reflections measured with Ni -filtered $\mathrm{Cu} \mathrm{K} \alpha$ radiation on a Picker automated four-circle diffractometer; 907 reflections observed with $I>2 \sigma(I)$. Cell dimensions from 16 centred refiections in the range $40<2 \theta<65^{\circ}$. During data collection three standard reflections were measured every 25 reflections. Standard deviation 0.06%. Range of h, k, l : $-7 \leq h \leq 9, \quad 0 \leq k \leq 9, \quad-7 \leq l \leq 9 ; \quad(\sin \theta) / \lambda<$ $0.59 \AA^{-1}$. φ-sweep absorption corrections were made (North, Phillips \& Mathews, 1968). The structure was solved from the Patterson function and refined on F using program XRFLS (Busing, Martin \& Levy, 1962). $\sigma(I)$ was based on counting statistics and $\sigma\left(F_{o}\right)$ as $\left\{[\sigma(I) /(\mathrm{Lp}) A]^{2}+0.02 F_{o}^{4}\right\}^{1 / 2} / 2 F_{o}$ where A is the transmission factor. Atomic scattering factors were taken from International Tables for X-ray Crystallography (1962) with corrections for anomalous scattering of Cl atoms included. Hydrogen atomic positions were all indicated on ΔF maps but, on refinement, gave $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ bond lengths in the range $0.74-1.20 \AA$. They were thus placed in their best theoretical positions with $\mathrm{C}-\mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ each $1 \AA$, and given isotropic temperature factors. $R=0.055, w R=0.073[w=$ $\left.1 / \sigma^{2}(F)\right], S=1 \cdot 36$. In the final refinement cycle the

[^0]largest parameter change was for β_{22} of atom $\mathrm{Cl}(1)$, 0.76σ.§

The two molecules per cell and atomic numbering are given in y-projection in Fig. 1. Atomic fractional coordinates and equivalent isotropic temperature factors are given in Table 1.
§ Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44286 (7 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 1. ORTEP plot (Johnson, 1965) of cell content in y-projection with 50% probability ellipsoids.

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$, e.s.d.'s and $B_{e q}$ values $[x, z$ of $\mathrm{Cl}(1)$ fixed arbitrarily]

$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{i j} \mathrm{a}_{i} \cdot \mathrm{a}_{j}$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Cl}(1)$	0	-1388 (2)	0	4.7 (1)
$\mathrm{Cl}(2)$	-6299 (3)	468 (2)	-136 (4)	4.8 (1)
$\mathrm{Cl}(3)$	-4075 (3)	-5633 (2)	1762 (4)	5.6 (1)
C(1)	-2136 (8)	-3411 (7)	861 (8)	2.9 (1)
C(2)	-3713 (9)	-3743 (7)	1053 (9)	3.5 (2)
C(3)	-4998 (9)	-2577 (8)	746 (10)	3.6 (2)
C(4)	-4714 (9)	-1018 (8)	206 (9)	3.5 (2)
C(5)	-3173 (9)	-638 (8)	4 (8)	3.3 (2)
C(6)	-1932 (8)	-1841 (7)	297 (8)	$3 \cdot 1$ (1)
C(7)	-944 (8)	-5885 (7)	106 (8)	$5 \cdot 1$ (1)
C(8)	657 (11)	-6914 (9)	616 (11)	4.3 (2)
N	-797 (7)	-4580 (6)	1202 (8)	$3 \cdot 3$ (1)
0	-2311 (7)	-6183 (6)	-1228 (8)	4.4 (1)

Related literature. The closest packing between chlorine atoms is $\mathrm{Cl}(1) \cdots \mathrm{Cl}(2), 3 \cdot 88, \mathrm{Cl}(1) \cdots \mathrm{Cl}(3), 3.85$ and $\mathrm{Cl}(2) \cdots \mathrm{Cl}(3), 3.71 \AA$, in each case longer than the smallest possible distances calculated from the effective van der Waals radii of the Cl atom, $3.54,3.36$ and $3.40 \AA$ respectively (Nyburg \& Faerman, 1985).

Thanks are due to Professor M. Wayman for supplying crystalline material and to the Natural Sciences and Engineering Research Council of Canada for financial support.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). XRFLS, an extensively modified version of ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.
International Tables for X-ray Crystallography (1962). Vol. III, 2nd ed. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Nyburg, S. C. \& Faerman, C. H. (1985). Acta Cryst. B41, 274-279.

Acta Cryst. (1987). C43, 2453-2455

Structure of 2,6-Pyrido-18-crown-6*-Guanidinium Perchlorate-Deuterochloroform

By J. van Eerden, W. T. Klooster and S. Harkema
Chemical Physics Laboratory, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
and C. J. van Staveren and D. N. Reinhoudt
Organic Chemistry Laboratory, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

(Received 19 June 1987; accepted 30 June 1987)

Abstract

C}_{15} \mathrm{H}_{23} \mathrm{NO}_{5} \cdot \mathrm{CH}_{6} \mathrm{~N}_{3}^{+} \cdot \mathrm{ClO}_{4}^{-} . \mathrm{CDCl}_{3}, \quad M_{r}=\) 577.27, orthorhombic, Pna ${ }_{1}, a=10.799$ (1), $b=$ 22.671 (5), $c=10.561$ (2) $\AA, V=2586$ (1) $\AA^{3}, Z=4$, $D_{x}=1.48 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Mo} K \alpha)=0.71069 \AA, \mu($ Mo K $\alpha)$ $=5 \cdot 1 \mathrm{~cm}^{-1}, F(000)=1200, \quad T=168 \mathrm{~K}$, final $R=$ 4.7% for 1762 observed reflections. Each guanidinium cation is hydrogen-bonded to two 2,6 -pyrido-18-crown6 molecules, as the macrocyclic cavity of one crown molecule cannot encapsulate the cation completely. Similarly, each crown molecule is hydrogen-bonded with two cations. As a result, the structure consists of chains with an alternating sequence of crown molecules and cations. The perchlorate anion is involved in short contacts with two 2,6 -pyrido-18-crown- 6 molecules and one solvent molecule of deuterochloroform.

Experimental. The title compound was obtained in an extraction experiment. A solution of 1 mmol of 2,6 -pyrido-18-crown-6 in $2 \mathrm{ml} \mathrm{CDCl}_{3}$ was equilibrated with a solution of 2 mmol of guanidinium sulfate and $2 \mathrm{mmol} \mathrm{LiClO}_{4}$ in $2 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$. The organic layer was separated off and the amount of guanidinium perchlorate that was extracted into the organic phase was determined from the intensities in the ${ }^{1} \mathrm{H}$ NMR spectrum. Only 0.32 mmol of guanidinium perchlorate proved to be transferred. Upon addition of 0.5 ml of

[^1]0108-2701/87/122453-03\$01.50
diethyl ether the complex crystallized and was filtered off; m.p. $353-356 \mathrm{~K}$ (Uiterwijk, van Staveren, Reinhoudt, den Hertog, Kruise \& Harkema, 1986).

Intensities were measured at 168 K on a Philips PW 1100 diffractometer (Mo $K \alpha$ radiation, graphite monochromator). Lattice parameters determined by least squares from 25 centered reflections ($4.5<$ $\theta<9.5^{\circ}$). A total of 2404 independent reflections up to $\theta=25^{\circ} \quad(0 \leq h \leq 12, \quad 0 \leq k \leq 26, \quad 0 \leq l \leq 12)$ were measured in the $\theta / 2 \theta$ scan mode (scan speed $0.05^{\circ} \mathrm{s}^{-1}$, scan width 1.4°); 1762 reflections considered observed [$F_{o}{ }^{2}>3 \sigma\left(F_{o}{ }^{2}\right)$]. The intensity variation of three standard reflections, measured every hour, was less than3%. No absorption correction.

The structure was solved with MULTAN (Germain, Main \& Woolfson, 1971) and refined by full-matrix least squares. Weights for each reflection in the refinement (on F) were calculated from $w=4 F_{o}{ }^{2} /$ $\sigma^{2}\left(F_{o}{ }^{2}\right), \sigma^{2}\left(F_{o}{ }^{2}\right)=\sigma^{2}(I)+\left(p F_{o}\right)^{2}$; the value of the instability factor p was determined as 0.06 . All H atoms were located on difference Fourier maps; they were placed in calculated positions and treated as riding on their parent atoms [bond distance $0.96 \AA, B_{\text {iso }}(\mathrm{H})$ $=1.2 B_{\text {eq }}$ (parent)]. The number of parameters refined was 308: scale factor, isotropic extinction parameter [final value $1.1(6) \times 10^{-7}$], positional and anisotropic thermal parameters for the non-H atoms.

Refinement converged at $R=4.7 \%, w R=6.0 \%$, $(\Delta / \sigma)_{\text {max }}=0 \cdot 11$. Largest peak on final difference © 1987 International Union of Crystallography

[^0]: * Present address: Department of Chemistry, King's College London (KQC), Strand, London WC2R 2LS, England.
 \dagger Present address: North Island College, 1480 Elm St., Campbell River, British Columbia V9W 3H6, Canada.
 \ddagger Present address: Department of Energy, Mines \& Resources, 555 Booth St., Ottawa, Ontario K 1A 0G1, Canada.

[^1]: *IUPAC name: 3,6,9,12,15-pentaoxa-21-azabicyclo[15.3.1]-henicosa-l(21), 17,19-triene.

